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A M E T H O D  OF D E T E R M I N I N G  T H E  P I E Z O E L E C T R I C  M O D U L U S  

OF A N O N U N I F O R M L Y  P O L A R I Z E D  R O D  

A. O. Vatul 'yan  and  A. N. Solov'ev 1 UDC 539.3 

A method is proposed for determination of the depolarization function of a rod of piezoelectric 
ceramics for a specified amplitude-frequency characteristic of the current. The problem is 
reduced to a nonlinear integral equation solved by means of a combination of Tikhonov's 
linearization and regularization methods. The uniqueness of the solution is shown and a series 
of numerical experiments is carried out with the aim to determine the polarization law. 

In the recent past, devices made of piezoelectric materials with inhomogeneous polarization have 
widely been introduced in industry [1, 2]. In this connection, one of the main problems is to determine 
the characteristics of the material that depend on the coordinates, among which piezoelectric moduli possess 
the maximum variability. 

In the present paper, a method of determining the relation between the variation in the piezoelectric 
modulus d31(Xl) and the vibration frequency, which is varied in a certain range, is proposed for the case 
where the amplitude value of the current is specified. The problem is reduced to a nonlinear integral equation 
of the first kind, the solution of which is constructed by means of a combination of the linearization and 
regularization methods proposed by Tikhonov. 

1. We consider vibrations of a piezoelectric ceramic rod oriented along the Oxl axis with electrodes 
located at the surfaces perpendicular to the x3 axis. We assume that the length of the rod l is much greater 
than its thickness h and width b. The problem is then one-dimensional, and the stress-tensor components 0.0 
and the vector of electric intensity Ei can be assumed to be independent of the coordinates x2 and x3. Since 
E1 = E2 = 0 at the surfaces with electrodes, one can set E1 = E2 = 0 at each point of the rod, provided that 
h/l << 1. From all the stress-tensor components, the only nonzero component is 0.11. Moreover, we assume that 
owing to the partial depolarization of the rod [for example, as a result of the action of a nonuniform heating 
field with a temperature higher than the Curie point, the end xl = I can be depolarized completely, i.e., d31(l) 
vanishes], the piezoelectric modulus d31 is no longer constant, and it is a certain decreasing function of the 
coordinate d31 = d31 (Xl). In addition, we assume that the modulus of elasticity and the dielectric permittivity 
are constant. In this case, the  equations of state [3] have the form 

OUl 
0Xl -= sE0.11 + d31(xl)E3, D3 = d31(Xl)0.11 + e33E3 (1.1) 

(e is the dielectric constant) and, from the electroelasticity equations, we have only one equation 

00"11 O2U 1 
Oxl = p 0t 2 ' (1.2) 

since the equation divD = 0 is satisfied identically. 
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Assuming that the ends of the rod xl = 0 and 1 are stress-free, we find a relation between the current 0/ 
I(t)  = - - ~  D3 dx and the electric-field strength E3(x , t )  = E(t) .  

8 

Eliminating the displacement u l (x l ,  ~) from (1.1) and (1.2), we obtain the boundary-value problem 

02cql 1 02~11 02E 
- 0t--z- +" 3'(xl/0t2' = 0, = 0,  Oz~ (1.3) 

w h e r e  c = 
We formulate an inverse problemi to determine the piezoelectric modulus d31 (xl) for a specified current 

I(t) ,  where 0 <~ t <~ T, or its amplitude component as a function of vibration frequency. A widespread method 
of solving these problems in the nonstationary case is the method of reducing them to Volterra integral 
equation [4, 5]. 

R e m a r k .  Formulation of the inverse problem of determining the function for given displacements at 
one end of the rod is well studied [4, 5]. In practice, however, the measurement of the amplitude-frequency 
characteristic of the current is a much simpler experiment compared to the measurement of the amplitude- 
frequency characteristic of the displacement. 

We derive a governing relation for determination of dal(Xl) for steady vibrations of the rod. 
2. We consider the simplest case where the excitation of the rod is harmonic, i.e., E(t)  = Eoe i~  and 

I( t)  = -Toe i~t. We find the amplitude of the current -To and the conductance of the rod Z: 
1 /0 
Z - Eoh - - i B o f l R ( f l ) ;  (2.1) 

k s 
R(~) = 1 sin ~l.F(fl), 

1 1 y 

F(fl )  = ~l f f (y)[  f f(T/)sin(~(T/- 1))&] s i n ( f l y ) -  y)) f(Ti)dTisin~ ] dy, (2.2) 
0 0 0 

Here the following dimensionless parameters and functions are introduced: 

f l =  wl Bo = - -  - f ( y )  - , y = - - .  
c '  h , ea3Slla E '  d31(0) l 

It is well known that the condition R(fl) ~ oc determines the resonance frequencies of the system: 
~rn 

s i n g / = 0  =~ f l , = ~ r n ,  w , , =  , n = 1 , 2 ,  . . . .  

We note that these frequencies do not depend on the variation in d31(zl), and depolarization does not alter 
the resonances of the system. 

The condition R(f~) = 0 determines the antiresonance frequencies, which depend strongly on da~(z~). 
The equation for antiresonance frequencies has the form 

1 1 y 

s i n f ~ -  k2f~ / f ( y ) [ / s i n ( f ~ ( ~  - 1))f(~)drlsin(f~y ) - / s i n ( ~ ( r / -  y))f(rl)drlsinf~ ] dy = 0  
I1 o 0 

and can be used for obtaining information on the function d31(xl). 
We formulate the inverse problem of determining the function I(Y) e U = L2[0, 1] N M[0, 1] [6]. Here 

L2[0,1] is the space of square-summable functions on [0, 1], and M[0, 1] is the space of positive functions 
decreasing monotonically on [0, 1], which is attributed to the physical properties of the desired function f (y ) .  

As the initial data, we use the function F (~ )  = F.(f~), which is assumed to be defined on the interval 
f~ E [f~l, f~2] and can be expressed in terms of the amplitude characteristic of the current f~R(fl) from relation 
(2 .2) .  
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Thus, this inverse problem reduces to the nonlinear integral equation for the desired function f ( y )  E U: 

1 1 

A ( f )  = n j f(Y)/, j f(7)sin(f~(y - i)) dr/sin(fly) 
f 

0 0 

Y j )  I 

- j sin(D(O - y ) ) f (~ l )dys in~  I . cly = F.(12), ~ e [9h,gt21. (2.3) 
0 

We investigate the question of uniqueness of the solution of the integral equation (2.3). We show that, 
for certain constraints imposed on the interval [9h, fl2], its solution is unique in U. We suppose the contrary, 
i.e., Eq. (2.3) admits two distinct solutions f l ,  f2 e U. Next, we represent the operator A ( f )  in L2[0, 1] in the 
form of a scalar product A ( f )  = (Aof ,  f ) ,  where A0 is the linear operator with a symmetric kernel: 

{ s in(a(T/-  1))sin(gty), y < ~7, 
A0(fl, y,y) = fl sin(fly)sin(fl(y - 1)), y > ,7. 

One can easily see that (A0f, f )  ~< 0 at least for 0 < fl < ~', the equality being possible only for f = 0. 
Using this property and the condition (Aof l ,  f l )  = (Aof2, f2), we establish the inequalities 

(Ao(f l  - f2), f l  - f2) = 2(A0fl, fl  - f2) < 0, 

(Ao(f l  - . f2),fl  - f2) = 2(Aof2, f2  - f l )  <~ O. 

Since Aof l  > 0 and Aof2 > 0 for 0 < gt < r ,  the last two inequalities imply that fl  - f2 = 0. Thus, 
the uniqueness is established. 

3. It is well known that the procedure of solution of the nonlinear equation (2.3) is an incorrect problem 
[7]; therefore, regularization algorithms should be used. We construct the solution of (2.3) by two stages on 
the basis of an approach that combines A. N. Tikhonov's lineaxization and regularization methods. 

At the first stage, we construct the solution of Eq. (2.3) in the class of linear nonincreasing functions 

f = fo(y) = ao + aly; (3.1) 

moreover, from the physical considerations, we obtain the following constraints imposed on the constants a0 
and al: 0 ~< a0 ~< 1, al ~< 0, and a0 + al /> 0, which determine a triangle U0 on the (a0, al) plane. 

The constants a0 and al are found from the minimum condition for the nonquadratic functional 

f12 

= / ]A(I  o) - r FI 2 dfl 

[21 

on a set of a priori constraints U0. 
We note that,  in this case, the integrals in the expression for the operator A(fo) are readily calculated 

and A(fo) = F0(fl), where F0(gt) = a02a0(gt)+ aoalcxl(gl)+ al2a2(fl) and the following notation is introduced: 

( ) 1 cosn ~0(fl) = - 2 s i n ( n / 2 )  2sin(12/2)~2 cos(12/2) = cr,(fl), (x2(12) = - ~  + g s i n n  + ~ g l  

Thus, we have a problem of determining the minimum of the function (I'(a0, al)  in the domain U0, 
which is solved by the standard method. 

In accordance with the linearization procedure [4], at the second stage, we find the next approximation 
f l ( y )  = f ( y )  - fo(y) using the Newton-Kantorovich scheme [8] 

A ( f )  = A(fo)  + A ' ( fo ) f l ,  

where the Ggteaux derivative of the operator is found from the definition 

A'( fo) f l  = lim A(fo + t f l )  - A(fo)  
t-.-*O t 
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and has the form 
1 1 y 

A'(fo)fl = o [ f  f o ( Y ) ( f  f l  (q)sin(f~(r/-  1 ) )d r / s in ( f ly ) -  f sin(fl(r/- y))fl(r/)dr/sinO)dy 
0 0 0 

1 1 y 

+ f f l ( y ) ( f  f0(r/)sin(f~(r/-  1 ) )d r / s in ( f ly ) -  f sin(O(q- y))fo(r/)dr/sinO)dy]. (3.2) 
0 0 0 

We obtain the Fredholm linear integral equation of the first kind 

1 

= / g ( y , f l ) f l ( y ) d y  = gl(fl),  fl E [01,f12], (3.3) Kfl  
0 

in which gl(fl)  = F.(f l)  - A(fo), and the kernel K(y, fl) is obtained from (3.2): 

1 1 

g(y,f~) = fl [sin(f~(y - 1 ) ) f  f0 ( r / ) s in ( f i r / )d r / - s in f l  / sin(fl(y - r/))fo(r/)dr/ 
0 y 

1 y 
"1 

+ / f0(r / )s in(O(,  - 1)) dr/sin(fly) - / s in( f l ( r / -  y))f0(r/) dr/sin f~[. (3.4) 
0 0 

J 

Calculating the integrals in (3.4) for the linear functions fo(Y) (3.1), after simplifications we obtain the 
expression for the kernel 

g(y,  O) = a0[(1 - cos fl)(sin(fl(y - 1)) - sin(fly)) + sin fl(2 - cos(fl(y - 1)) - cos(fly))] 

- a l  [cos O sin(O(y - 1)) + sin(fly) - sin f~(2y - cos(O(y - 1)))], (3.5) 

which is a smooth function on [0, 1] • [Ol,fl2]. We note that  g ( 0 , f l )  = 1((1, fl) = 0. 
Thus,  we reduced the problem of determining the function fl  (y) to a Fredholm linear integral equation 

of the first kind with the smooth  kernel (3.4). It is well known that  the inversion of this operator is an incorrect 
problem [7] and requires regularization. 

4. To obtain a numerical  solution, we regularize the integral equation (3.3) by Tikhonov's method by 
discretizing the boundary-value problem for the Euler equation and subsequently solving the resulting system 
of linear algebraic equations [7]. A series of numerical experiments for various functions f(y) was performed. 
We consider three cases: 

Case A. f(y) = e x p ( - ~ y ) .  (4.1) 
CaseB. f (y )=boy 3+bly 2+b2y+b3. 

61, 0 <~ y <~ Xl, 

Case C. f(y) = 62 - df._...__~2(y _ xl) + ~1, xl <<. y <~ x3, 
x 3 - -  x 1 

~f2, x3 ~< y ~< 1. 
For case A for ~ = 5, Fig. l a  shows the graphs of the input characteristic F.(f~) (curve 1), which 

was calculated using the function (4.1), and characteristic F0(fl) (curve 2), which was calculated for the 
linear function fo(y) (3.1) with a0 = 0.4924 and al = - a0 ,  which ensure a minimum of the functional 
r in the domain U0. Figure lb  shows the graphs of the functions f(y) and fo(y) (curves 1 and 2) and 
fN(Y) = fo(Y)+ fl(Y) depicted by points. In solving the integral equation (3.3), ten collocation points N = 10 
were taken to determine fl(y). It should be noted that  the corrections do not exceed 5% with increasing 
N from 5 to 10; the solution is stable relative to the regularization parameter  a varied within the range 
[10 -5, 0.01]. In connection with the Remark on the behavior of the kernel (3.5) at the boundary of its domain, 
it is expedient to choose collocation points so that  they do not belong to the boundary y = 0 and 1, as done 
in the numerical calculations. 

542 



F 

0.08 

0.04 

0 

-0.04 

-0.08 

a 

2 

5 10  15 2 0  Q 

Fig. 1 

r k b 
0.8 

0.4 

1 

o 2 

0.4 0.8 y 

0.4 7 

0. 

-0.2 

-0.4 
5 10 15 20 Q 

F 
0.6 

0.4 

0.2 

O: 

-0.2 

-0.4 

a 

5 10 15 20 Q 

Fig. 2 

Fig. 3 

0.8 

0.4 

0.8 

0.4 

b 

I 2 

0.4 0.8 y 

i T n i ~  o 

0.4 0.8 y 

In case B, the  restored curve has an inflection point. The function f(y) has a maximum for y = 0 and 
a minimum for y = 1. Moreover, b0 = 1.98, bl = -2.97,  b2 -- 0, and b3 = 1. Graphs similar to those described 
above are represented in Fig. 2. It was found tha t  a0 = 1 and al  = -0.9379. The relative error in determining 
the form of f(y) does not exceed 3%, beginning from N = 5 for a E [10 -5, 0.01]. 

In case C, the restored function is piecewise-constant. Numerical calculations show that  the error 
increases when the  slope of the  linear part of f(y) for y 6 [xl, x3] approaches ~r/2. Dependences similar to 
those obtained for case A are shown in Fig. 3 for xl = 0.3, x3 = 0.7, 61 = 0.95 and 62 = 0.07. The maximum 
error is 10%. It was found tha t  a0 = 1 and al  = 0.8966. The calculations were carried out for N = 10 and the 
regularization paxameter a = 0.01. 

It is noteworthy tha t  the above problem of restoration of the function f(y) on the basis of a priori 
physical data  concerning its behavior can be considered as an incorrectly formulated problem on a set of 
special structure and can be solved by the algorithms proposed by Tikhonov et al. [9]. We also used another 
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approach in which the determination of the functions fo(y) and fo(y) + fl(y) is considered as the zero and 
first steps of an iterative process. As the calculations show, the error at the second step for case B does not 
exceed 5% compared with 10% at the first step. 

As we pointed out above, the initial information for restoration of the piezoelectric modulus d31(xl) 
is the function F(f~) given by relations (2.1) and (2.2), which can be found experimentally (the conductance 
of a specimen is measured depending on the vibration frequency). In this connection, it is natural to analyze 
the effect of the measurement error on the stability of the developed approach. 

To this end, for case A, the function F(F~) was perturbed and the form was restored by the function 
F2(a) 

F (a) = F(a) + eBH(a) for a E [a, ,a2l,  

where e is a certain parameter, B is the amplitude of the function F(f~), and H(~)  is a certain random 
function such that [H(F/)[ ~< 1. The calculations performed for the case where e = 0.1, H(f~) = sin(10F/) for 
number of collocation points N = 10 and a = 0.5 �9 10 .5 show that the approximation error is not greater 
than 5%, i.e., it does not exceed the error introduced into the function F2(F/). 
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